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We prove asymptotic formulas for the behavior of approximation quantities of

identity operators between symmetric sequence spaces. These formulas extend recent

results of Defant, Masty"o, and Michels for identities ln
p+Fn with an n-dimensional

symmetric normed space Fn with p-concavity conditions on Fn and 14p42: We

consider the general case of identities En+Fn with weak assumptions on the

asymptotic behavior of the fundamental sequences of the n-dimensional symmetric

spaces En and Fn: We give applications to Lorentz and Orlicz sequence spaces, again

considerably generalizing results of Pietsch, Defant, Masty"o, and Michels. # 2002

Elsevier Science (USA)
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1. INTRODUCTION

Of special interest for applications in approximation theory is the study of
the asymptotic behavior of approximation quantities of finite dimensional
identity operators. One of the first well-known examples is the computation
of the approximation numbers of the identities id : ln

p+ln
q by Pietsch [6], see

also [7, Chap. 11], for 14q4p41: In this case

akðid : ln
p+ln

qÞ ¼ ðn � k þ 1Þ1=q�1=p

for k ¼ 1; . . . ; n:
This result was recently generalized by Defant, Masty"o and Michels in

the case that 14p42; see [1, 2]. If ln
q is replaced by the nth section Fn of a

p-concave symmetric Banach sequence space F ; they obtain the asymptotic
upported by DFG Grant Hi 584/2-2.
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formula

akðid : ln
p+FnÞ �

lF ðn � k þ 1Þ
ðn � k þ 1Þ1=p

;

where lF ðhÞ ¼ jj
Ph

i¼1 eijj is the fundamental sequence associated with the
Banach sequence space F with symmetric basis ðeiÞ:

In [2] it is also conjectured that the formula

akðid : En+FnÞ �
lF ðn � k þ 1Þ
lEðn � k þ 1Þ ð1Þ

describes the asymptotic behavior of the identities for a much wider range of
symmetric sequence spaces E and F ; where F is naturally embedded into E:
It is the purpose of this paper to confirm this conjecture if the fundamental
sequences lE and lF satisfy certain weak regularity conditions. Applications
to classical examples of Lorentz and Orlicz sequence spaces show that we
obtain a far-reaching generalization of the corresponding results in [1, 2, 6].

We now describe the organization of the paper in some detail. In Section 2
we introduce some basic notation for approximation quantities and
symmetric Banach sequence spaces. We state our main Theorem 1 which
gives lower and upper estimates for approximation and Gelfand numbers in
terms of the fundamental sequences of the involved symmetric sequence
spaces. In Sections 3 and 4 we prove these estimates. The last Section 5 is
concerned with applications to classical examples of symmetric sequence
spaces. We consider Orlicz and Lorentz sequence spaces and compare our
results to previously known results.

2. NOTATION AND PRELIMINARIES

We start with the introduction of some basic notation for approximation
quantities of linear operators between Banach spaces and for symmetric
sequence spaces. As usual, given Banach spaces E and F ; the Banach space
of all (bounded linear) operators from E into F equipped with the operator
norm is denoted by LðE;FÞ: For a (closed linear) subspace M of E; the
inclusion mapping of M into E is denoted by JE

M :
The approximation numbers of T 2 LðE;FÞ are given by

akðTÞ ¼ inffjjT � Tkjj : Tk 2 LðE;FÞ and rank Tk5kg

for k ¼ 1; 2 . . . : The Gelfand numbers of T are defined as

ckðTÞ ¼ inffjjTJE
M jj : M � E and codim M5kg:
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For further information on approximation quantities of operators between
Banach spaces, we refer the reader to [3, 8].

A basis ðekÞk51 of a Banach space E is called symmetric if for all
permutations p; all signs ek; and all sequences ðxkÞk51 such that

P1
k¼1 xkek 2

E; we have that
P1

k¼1 ekxpðkÞek 2 E and

X1
k¼1

ekxpðkÞek

�����
�����

�����
����� ¼

X1
k¼1

xkek

�����
�����

�����
�����:

By a symmetric Banach sequence space E we shall mean a Banach space of
sequences of real numbers such that the unit vector basis ek is a symmetric
basis of E: The fundamental sequence of E is the sequence

lEðnÞ ¼
Xn

k¼1

ek

�����
�����

�����
�����:

For convenience, we set lEð0Þ ¼ 0: With En we denote the span of e1; . . . ; en

in E: Given symmetric Banach sequence spaces E;F ; the formal identity
from En to Fn is denoted by id : En+Fn:

The main objects under consideration in this note are approximation
quantities for id : En+Fn: The following theorem gives sharp upper and
lower bounds for Gelfand and approximation numbers of these identities if
the fundamental sequences of the involved spaces satisfy certain combined
regularity conditions.

We will demonstrate in Section 5 how this theorem extends and
complements recent results on such approximation quantities in [1, 2].

Theorem 1. Let E;F be symmetric Banach sequence spaces such that

1. There exists c1 > 0 such that

X1
k¼lþ1

lEðkÞ � lEðk � 1Þ
lF ðkÞ

4c1
lEðlÞ
lF ðlÞ

for l ¼ 1; 2; . . . :
2. There exists c2 > 0 such that

Xl

k¼1

lF ðkÞ � lF ðk � 1Þ
lEðkÞ

4c2
lF ðlÞ
lEðlÞ

for l ¼ 1; 2; . . . :
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Then

lF ðn � k þ 1Þ
ðc1 þ 1ÞlEðn � k þ 1Þ4ckðid : En+FnÞ

4akðid : En+FnÞ4
c2lF ðn � k þ 1Þ
lEðn � k þ 1Þ

for n ¼ 1; 2; . . . and k ¼ 1; . . . ; n:

Observe that, up to equivalent renormings, it is no restriction to assume
that ðlEðkÞ � lEðk � 1ÞÞ and ðlF ðkÞ � lF ðk � 1ÞÞ are nonincreasing, see [4,
Proposition 3.a.7]. But this assumption is not needed for the theorem. On
the other hand, it is satisfied in the considered concrete examples. We prove
this theorem in the next two sections. It directly follows from Propositions 1
and 2 and the fact that ckðTÞ4akðTÞ for any operator T and all k:

Given two sequences an and bn of positive real numbers we write an  bn

whenever there exists c > 0 such that an4cbn for all n: Moreover, an � bn

means that an  bn and bn  an: We also use this notation for double
sequences ðan;kÞ and ðbn;kÞ with the understanding that the involved
constants depend neither on n nor on k:

3. BOUNDING THE APPROXIMATION NUMBERS

The following lemma is well-known. To keep the paper self-contained we
include the proof here.

Lemma 1. Let E be a symmetric Banach sequence space. Let x1; . . . ; xn be

nonnegative reals such that x15x25 � � �5xn50: Then

max
14k4n

lEðkÞxk4
Xn

k¼1

xkek

�����
�����

�����
�����4
Xn

k¼1

ðlEðkÞ � lEðk � 1ÞÞxk:

Proof. The identity

Xn

k¼1

xkek ¼
Xn�1

k¼1

ðxk � xkþ1Þ
Xk

i¼1

ei þ xn

Xn

i¼1

ei

and the triangle inequality imply that

Xn

k¼1

xkek

�����
�����

�����
�����4
Xn�1

k¼1

ðxk � xkþ1ÞlEðkÞ þ xnlEðnÞ ¼
Xn

k¼1

ðlEðkÞ � lEðk � 1ÞÞxk:
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For the other inequality, let SðhÞ be the symmetric group of all permutations
of f1; . . . ; hg: Then the symmetry of the norm and the triangle inequality
give that

Xh

k¼1

xkek

�����
�����

�����
����� ¼ 1

h!

X
p2SðhÞ

Xh

k¼1

xpðkÞek

�����
�����

�����
�����5 1

h!

X
p2SðhÞ

Xh

k¼1

xpðkÞek

������
������

������
������

¼
Xh

k¼1

1

h!

X
p2SðhÞ

xpðkÞ

0
@

1
Aek

������
������

������
������ ¼

Xh

k¼1

1

h

Xh

i¼1

xi

 !
ek

�����
�����

�����
�����

5xhlEðhÞ

for h ¼ 1; . . . ; n: Since jj
Ph

k¼1 xkekjj4jj
Pn

k¼1 xkekjj; we arrive at the claimed
inequality. ]

Proposition 1. Let E and F be symmetric Banach sequence spaces. Then

akðid : En+FnÞ4
Xn�kþ1

i¼1

lF ðiÞ � lF ði � 1Þ
lEðiÞ

for n ¼ 1; 2; . . . and k ¼ 1; . . . ; n:

Proof. For h ¼ 1; . . . ; n; let idh ¼ id : Eh+Fh: With slight abuse of
notation, we denote by Ph the projection onto the span of e1; . . . ; eh in En as
well as in Fn: Observe that Pn is the identity on the span of e1; . . . ; en: Then
rankðPn � Pn�kþ1Þidn ¼ k � 1 implies that

akðidnÞ4jjidn � ðPn � Pn�kþ1Þidnjj ¼ jjPn�kþ1idnjj

¼ jjidn�kþ1Pn�kþ1jj4jjidn�kþ1jj:

So it is enough to verify that for any h ¼ 1; 2; . . . and all real numbers
x1; . . . ; xh

Xh

k¼1

xkek

�����
�����

�����
�����
Fh

4
Xh

i¼1

lF ðiÞ � lF ði � 1Þ
lEðiÞ

Xh

k¼1

xkek

�����
�����

�����
�����
Eh

:

By the symmetry of both norms we may and do assume that x15x25 � � �
5xn50: Then the claimed inequality is an immediate consequence of
Lemma 1. ]
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4. BOUNDING THE GELFAND NUMBERS

To bound the Gelfand numbers of identities between symmetric sequence
spaces, we use the following well-known lemma about special vectors in
subspaces of Rn: For a proof see [7, 11.11.4]. We denote the cardinality of a
set A with jAj:

Lemma 2. Let M be a subspace of Rn with codim M5k: Then there exists

a vector x ¼ ðx1; . . . ; xnÞ 2 M such that jxkj41 for k ¼ 1; . . . ; n and jfk :
jxkj ¼ 1gj5n � k þ 1:

Proposition 2. Let E and F be symmetric Banach sequence spaces such

that, for n ¼ 1; 2; . . . and l ¼ 1; . . . ; n;

Xn

i¼lþ1

lEðiÞ � lEði � 1Þ
lF ðiÞ

4c
lEðlÞ
lF ðlÞ

: ð2Þ

Then

ckðid : En+FnÞ5
lF ðn � k þ 1Þ

ðc þ 1ÞlEðn � k þ 1Þ

for n ¼ 1; 2; . . . and k ¼ 1; . . . ; n:

Proof. Let l ¼ n � k þ 1: Given a subspace M � Rn with codim M5k;
we have to find a nontrivial x 2 M such that

jjxjjEn
4ðc þ 1Þ lEðlÞ

lF ðlÞ
jjxjjFn

:

We show that we can take any x 2 M as given by Lemma 2. By symmetry of
the involved norms, we may and do assume that

1 ¼ x1 ¼ � � � ¼ xl5xlþ15 � � �5xn50:

By Lemma 1 it is enough to show that for such x

Xn

i¼1

ðlEðiÞ � lEði � 1ÞÞxi4ðc þ 1Þ lEðlÞ
lF ðlÞ

max
14i4n

lF ðiÞxi:

Let io5l be such that

lF ðiÞxi4lF ðioÞxio for i ¼ l; . . . ; n:
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Since 1 ¼ x1 ¼ � � � ¼ xl we conclude from the monotonicity of lF that

max
14i4n

lF ðiÞxi ¼ lF ðioÞxio : ð3Þ

So we are left to verify that

Xn

i¼1

ðlEðiÞ � lEði � 1ÞÞxi4ðc þ 1Þ lEðlÞ
lF ðlÞ

lF ðioÞxio : ð4Þ

It follows from 1 ¼ x1 ¼ � � � ¼ xl and (3) that

Xl

i¼1

ðlEðiÞ � lEði � 1ÞÞxi ¼ lEðlÞ4
lEðlÞ
lF ðlÞ

lF ðioÞxio :

Moreover, it also follows from (3) and (2) that

Xn

i¼lþ1

ðlEðiÞ � lEði � 1ÞÞxi 4
Xn

i¼lþ1

lEðiÞ � lEði � 1Þ
lF ðiÞ

lF ðioÞxio

4c
lEðlÞ
lF ðlÞ

lF ðioÞxio :

Adding up the last two inequalities proves (3) and the proposition. ]

5. APPLICATION TO LORENTZ AND ORLICZ SPACES

We start this section with a modification of Theorem 1 in the case that

lEðkÞ � k1=p and lEðkÞ � lEðk � 1Þ � k1=p�1

which in particular applies to the case that E ¼ lp or, more generally,
E ¼ lp;q with 15p51 and 14q41:

Theorem 2. Let 14q5p51: Let E and F be symmetric Banach

sequence spaces such that

(i) lEðkÞ � k1=p and lEðkÞ � lEðk � 1Þ � k1=p�1:

(ii) There exists c > 0 such that n1=qlF ðmÞ4clF ðmnÞ for m; n¼1; 2; . . . :
Then

akðid : En+FnÞ � ckðid : En+FnÞ �
lF ðn � k þ 1Þ
ðn � k þ 1Þ1=p

:
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Proof. We are going to show the inequalities

X1
k¼lþ1

lEðkÞ � lEðk � 1Þ
lF ðkÞ

 l1=p

lF ðlÞ
; ð5Þ

Xl

k¼1

lF ðkÞ � lF ðk � 1Þ
lEðkÞ

 lF ðlÞ
l1=p

: ð6Þ

Application of Theorem 1 then finishes the proof.

To verify (5) and (6) we choose for given l an integer m such that 2m4l

52mþ1: From assumption (i) we conclude that

X1
k¼lþ1

lEðkÞ � lEðk � 1Þ
lF ðkÞ

�
X1

k¼lþ1

k1=p�1

lF ðkÞ
4
X1
k¼2m

k1=p�1

lF ðkÞ
�
X1
k¼m

2k=p

lF ð2kÞ:

Assumption (ii) now implies that

2ðk�mÞ=qlF ð2mÞ4clF ð2kÞ for k5m:

Using 1=q > 1=p; we then arrive at

X1
k¼m

2k=p

lF ð2kÞ 
2m=q

lF ð2mÞ
X1
k¼m

2kð1=p�1=qÞ � 2m=p

lF ð2mÞ �
l1=p

lF ðlÞ
:

This proves (5).
Using (i) once again, we find that

Xl

k¼1

lF ðkÞ � lF ðk � 1Þ
lEðkÞ

�
Xl

k¼1

lF ðkÞðlEðkÞ�1 � lEðk þ 1Þ�1Þ

�
Xl

k¼1

lF ðkÞk�1=p�1 �
Xm

k¼1

2�k=plF ð2kÞ:

It follows from (ii) that

2ðm�kÞ=qlF ð2kÞ4clF ð2mÞ for k ¼ 1; . . . ;m:
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Finally, using again 1=q > 1=p; we get

Xm

k¼1

2�k=plF ð2kÞ � 2�m=qlF ð2mÞ
Xm

k¼1

2kð1=q�1=pÞ � lF ð2mÞ
2m=p

� lF ðlÞ
l1=p

;

which shows (6). ]

To formulate our next corollary, we need the notion of a q-concave
Banach lattice. A Banach lattice X is q-concave for some 14q51 if there
exists c such that for all x1; . . . ; xn 2 X

Xn

k¼1

jjxkjjq
 !1=q

4c
Xn

k¼1

jxkjq
 !1=q
������

������
������

������:
The smallest possible c is usually denoted by MqðX Þ:

Trivially, a symmetric Banach sequence space is a Banach lattice. In this
case, the operations of modulus and powers in the above inequality are
simply applied coordinatewise. For more information on the concepts of
p-convexity and q-concavity, we refer the reader to [5].

Corollary 1. Let 14q5p51: Let E be a symmetric Banach sequence

space with lEðkÞ � k1=p and lEðkÞ � lEðk � 1Þ � k1=p�1: Let F be a

symmetric Banach sequence space such that there exists a q-concave Banach

sequence space G with equivalent fundamental sequence, i.e., lF ðkÞ � lGðkÞ:
Then

akðid : En+FnÞ � ckðid : En+FnÞ �
lF ðn � k þ 1Þ
ðn � k þ 1Þ1=p

:

Proof. This corollary is a direct consequence of Theorem 2 once we
show that there exists c > 0 such that

n1=qlGðmÞ4clGðmnÞ for m; n ¼ 1; 2; . . . :

This inequality follows immediately from the definition of q-concavity using
the vectors

xk ¼
Xkm

ðk�1Þmþ1

ei

for k ¼ 1; . . . ; n: ]



AICKE HINRICHS314
Now we give applications to special symmetric sequence spaces. For the
definition and properties of the involved spaces we refer to [4].

Example 1. Lorentz sequence spaces lp;q: Let 15p25p151 and
14q1; q241: Then Corollary 1 applies with p ¼ p1; q ¼ p2; E ¼ lp1;q1

;
and F ¼ lp2;q2

: Here we can choose G ¼ lq ¼ lp2
: So we have

akðid : ln
p1;q1

+ln
p2;q2

Þ � ckðid : ln
p1;q1

+ln
p2;q2

Þ � ðn � k þ 1Þ1=p2�1=p1 :

Example 2. Lorentz sequence spaces dðw; rÞ: Here 14r51 and
w ¼ ðwnÞ is a nonincreasing null sequence of positive weights such that
w1 ¼ 1 and such that the series

P
wn diverges. For simplicity, let us assume

that w ¼ ðwnÞ is 1-regular, i.e.,
Pn

k¼1 wk � nwn: Then

ldðw;rÞ ¼
Xn

k¼1

wn

 !1=r

� n1=rw1=r
n :

Assume now that r5p and

wm4cnawmn

for some c; some a51 � r=p and all m; n: Then we can choose q 2 ðr; pÞ such
that wm4cn1�r=qwmn which is easily seen to imply condition (ii) in Theorem
2 for F ¼ dðw; rÞ: Thus we have

akðid : ln
p+dnðw; rÞÞ � ckðid : ln

p+dnðw; rÞÞ � ðn � k þ 1Þ1=r�1=p
w

1=r
n�kþ1:

Example 3. Orlicz sequence spaces lj: For an Orlicz sequence space
F ¼ lj; it is easily computed that

lF ðnÞ ¼
1

j�1ð1=nÞ:

Then the assumption

j�1ðstÞ4ct1=qj�1ðsÞ

for some c and all s; t 2 ð0; 1� implies condition (ii) in Theorem 2. So, in this
case we again have

akðid : ln
p+ln

jÞ � ckðid : ln
p+ln

jÞ �
1

j�1ð1=ðn � k þ 1ÞÞðn � k þ 1Þ1=p
:

Remark 1. Corollary 1 and the above examples show, that Theorem 2
has a wider range of application than Theorem 5.1 in [1]. Nevertheless, in
some borderline cases where E ¼ lp for 14p42 and F is p-concave but not
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q-concave for any q5p; that theorem is applicable but Theorem 2 is not.
However, in the case that the only assumptions on the symmetric sequence
spaces used are in terms of its fundamental sequences and not in terms of
other geometric properties as e.g., q-convexity or type, our result seems to be
optimal.
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